

HRVATSKO DRUŠTVO ZA MEHANIKU CROATIAN SOCIETY OF MECHANICS

 Ivana Lučića 5, HR -10000 ZAGREB Republika Hrvatska
01 61 68 137
01 61 68 187
zdravko.virag@fsb.hr
http://www.csm.hr

Zagreb, 14. lipnja 2010.

Poziv

Pozivamo Vas na predavanje

A PHASE FIELD MODEL FOR FERROELECTRIC MATERIALS -SIMULATION AND ENGINEERING ON NANOSCALE

koje će održati

Dr. Ingo Muench

Kartsruhe Institute of Technology (KIT), Njemačka

u četvrtak 24. lipnja 2010. u 11:00 sati

na Fakultetu strojarstva i brodogradnje, Zagreb, Ivana Lučića 5, dvorana F.

Više o predavanju može se naći na web stranici: <u>http://www.csm.hr</u>.

PREDSJEDNIK DRUŠTVA

Idavhor brog

Prof. dr. sc. Zdravko Virag

A phase field model for ferroelectric materials - simulation and engineering on nanoscale

I. Muench*, J.E. Huber[†]

*Institute for Structural Analysis, Karlsruhe Institute of Technology (KIT) Kaiserstr. 12, D-76131 Karlsruhe, ingo.muench@kit.edu

[†]Department of Engineering Science, University of Oxford Parks Road, Oxford, OX1 3PJ, John.Huber@eng.ox.ac.uk

With the use of a phase field model we investigate tetragonal ferroelectric single crystals on the nanoscale, where only small numbers of domains are expected. Therefore, commonly occurring arrangements of domains with particular properties evolve.

In previous work, the existence of known domain topologies has been used to analyze ferroelectric microstructure and its evolution under electrical and mechanical loads, see e.g. [1, 2]. Two dimensional plane strain models of domain evolution are widespread and are able to characterize a great spectrum of ferroelectric single crystal behaviour. However the real crystals have three dimensional nature and produce microstructure domain topologies that cannot be found in two dimensions. This motivates the present, three dimensional study.

In this work, a 3D phase field model is used which has its origins in the work of [3, 4, 5, 6]. The model uses electrical polarization P as the order parameter. For isothermal processes below the Curie temperature this model yields the commonly accepted Ginzburg-Landau equation for the evolution of the polarization. From a physical point of view, this describes the rearrangement of atoms within unit cells when phase interfaces move through the material.

References

- J.E. Huber and A.C.F. Cocks, A variational model of ferroelectric microstructure. Proceedings of SMASIS08, ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Ellicott City, Maryland, USA, October 28-30, 2008.
- [2] G.J. Weng and D. T. Wong, *Thermodynamic driving force in ferroelectric crystals with a rank-2 laminated domain pattern, and a study of enhanced electrostriction*. Journal of the Mechanics and Physics of Solids (2009), doi:10.1016/j.jmps.2008.11.009.
- [3] E. Fried and M.E. Gurtin, *Continuum theory of thermally induced phase transitions based on an order parameter*. Physica D, **68**, 326–343, 1993.
- [4] E. Fried and M.E. Gurtin, *Dynamic solid-solid transitions with phase characterized by an order parameter*. Physica D, **72**, 287–308, 1994.
- [5] Y. Su and C. M. Landis, *Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning.* Journal of the Mechanics and Physics of Solids, **55**, 280–305, 2007.
- [6] A. Kontsos and C. M. Landis, Computational modelling of domain wall interactions with dislocations in ferroelectric crystals. International Journal of Solids and Structures, 46, 1491–1498, 2009.

Curriculum Vitae

Personal Information

Ingo Münch ingo.muench@kit.edu +49 (721) 6082289 25th April 1975, Balingen, Germany Anuk Münch, born 30th July 2004

Professional Career:

11/2009	Certification for leak testing methods (highest German level LT-3)
since 08/2009	Senior Lecturer/Assistant Professor at the Karlsruhe Institute for Technology
04/2009 - 07/2009	Deputize for a Senior Lecturer at the University of Karlsruhe
08/2008 - 04/2009	Research project at the University of Oxford (UK)
04/2008 - 07/2008	Teaching at the University of Karlsruhe (TH) and freelancer at Wagner&Partner engineers
04/2002 - 03/2008	Graduate assistant at the Institute of Structural Analysis, University of Karlsruhe (TH)
12/2001 – 03/2002	Graduate employee at the Institute of Structural Analysis, University of Karlsruhe (TH)
09/2001 – 11/2001	Structural engineer at Bitzer-Weber-Nolle consulting engineers, Albstadt
04/2000 - 06/2001	Freelancer at Mader steel manufacturer, Albstadt
Church and Church English	incering and Dh.D. Thesis.

Study of Civil Engineering and Ph.D. Thesis:

04/2002 - 10/2007	Ph.D. Thesis at the University of Karlsruhe (TH): A geometric and
	material nonlinear Cosserat model - theory, numerical treatment
	and fields of application
10/1995 – 08/2001	Study of Civil Engineering at the University of Karlsruhe (TH)